



American Cancer Society®



Addressing Lung Cancer
Biomarker Testing
Through Project ECHO:
2022-2023 Expansion

Session Six:
"Genomic testing at the time of resistance"

#### **Welcome to Session Six:**

## **ACS/NLCRT Lung Cancer Biomarker Testing Project ECHO**



Each ECHO session will be recorded



You will be muted with your video turned off when you join the call.

Use the buttons in the *black* menu bar to unmute your line and to turn on your video.

If you do not wish to have your image recorded, please turn OFF the video option.



Today's materials will be made available on www.echo.cancer.org



Please type your name, email address and organization in the chat box



This ECHO session takes place on the Zoom platform.

To review Zoom's privacy policy, please visit <a href="https://zoom.us/privacy">https://zoom.us/privacy</a>



Remember: Do NOT share any personal information about any patient



Questions? Type them in the chat box or message







#### Today's Agenda

**Agenda Preview & Introductions (5 min)** 

**Didactic Presentation:** Dr. Rick Hall, UVA

*Genomic testing at the time of resistance* (15 min)

**Didactic Q/A (5 min)** 

Case Presentation: Dr. Nathan Roberts

Hematology/Oncology Fellowship Program, UVA (5 min)

**Case Presentation Recommendation/Discussion (10 min)** 

Post-Session Poll & Wrap Up (5 min)

## This ACS/NLCRT Lung Cancer Biomarker Testing ECHO series is made possible by funding provided by:

















#### **MEET OUR VIRGINIA HUB FACULTY**



Rick Hall, MD University of Virginia



Edward Stelow, MD University of Virginia



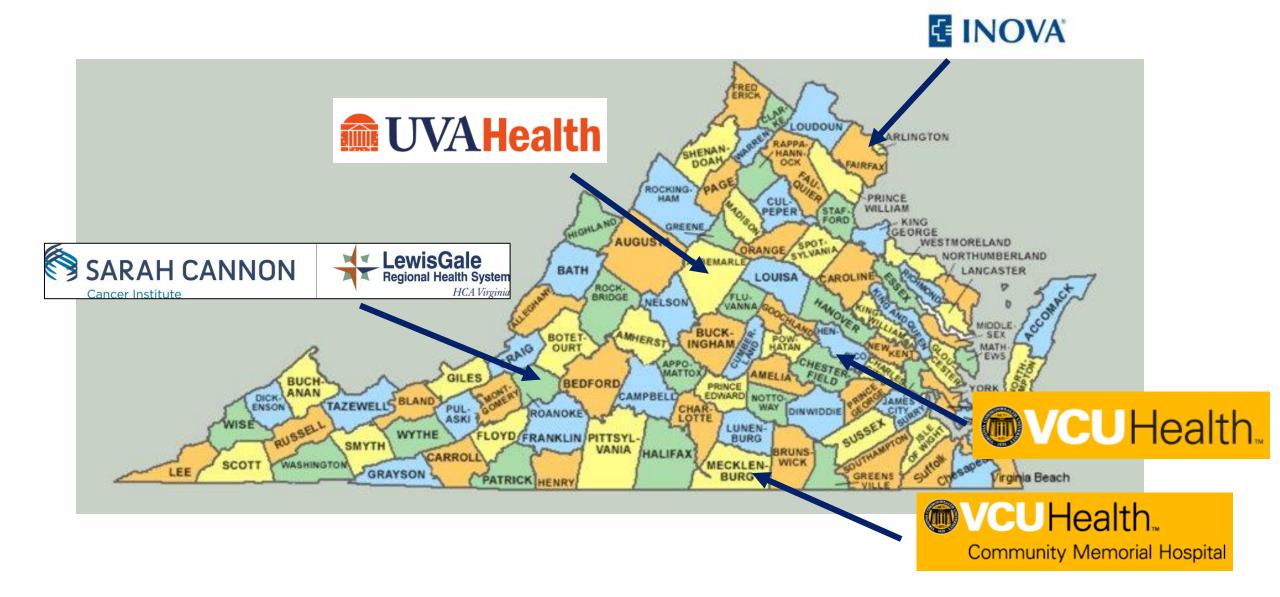
Renato Martins, MD
Virginia Commonwealth University

#### **MEET OUR VIRGINIA AMERICAN CANCER SOCIETY STAFF**



Riguey King
Vice President, Community Impact
American Cancer Society
Virginia ECHO Coordinator




Annika Dean American Cancer Society Virginia ECHO Coordinator



Allison Rosen
American Cancer Society
ECHO Tech Coordinator



#### VA CANCER CENTER SPOKE SITES & FACILITATIVE PARTNERS



# Reminder: Please type your name, email address and organization in the chat box

### **DIDACTIC PRESENTATION**

"Genomic testing at the time of resistance"

Richard D. Hall, MD, MS
University of Virginia
Associate Professor of Medicine
Hematology/Oncology Fellowship Program Director





# ONCOGENE MUTATION TESTING AT THE TIME OF RESISTANCE TISSUE, BLOOD, OR EVEN PERFORM AT ALL?

RICHARD HALL MD, MS
ASSOCIATE PROFESSOR OF MEDICINE, DIVISION OF HEMATOLOGY/ONCOLOGY
AMERICAN CANCER SOCIETY – PROJECT ECHO
APRIL 27, 2023



#### **LEARNING OBJECTIVES**

Identify molecular targets for therapy in NSCLC

Understand role of ctDNA and tissue testing in NSCLC

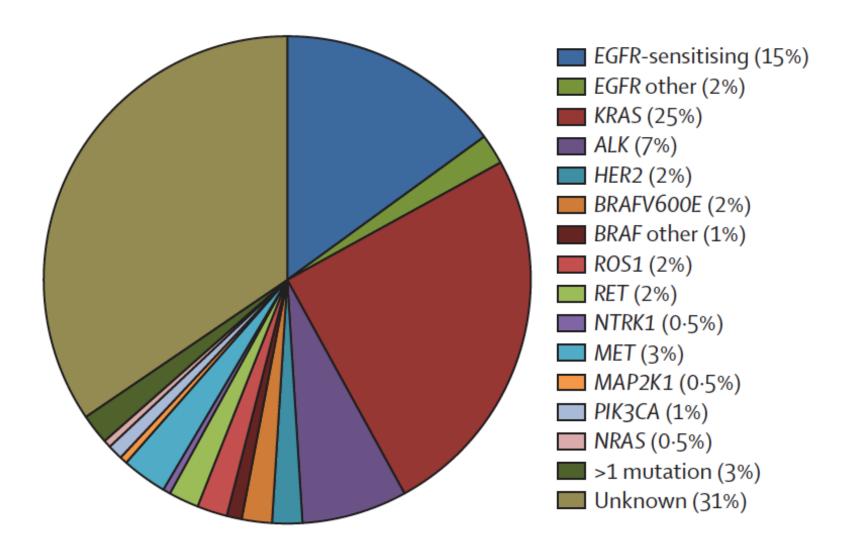
Identify reasons for molecular testing in EGFR positive NSCLC



#### **TESTING HISTORY:**

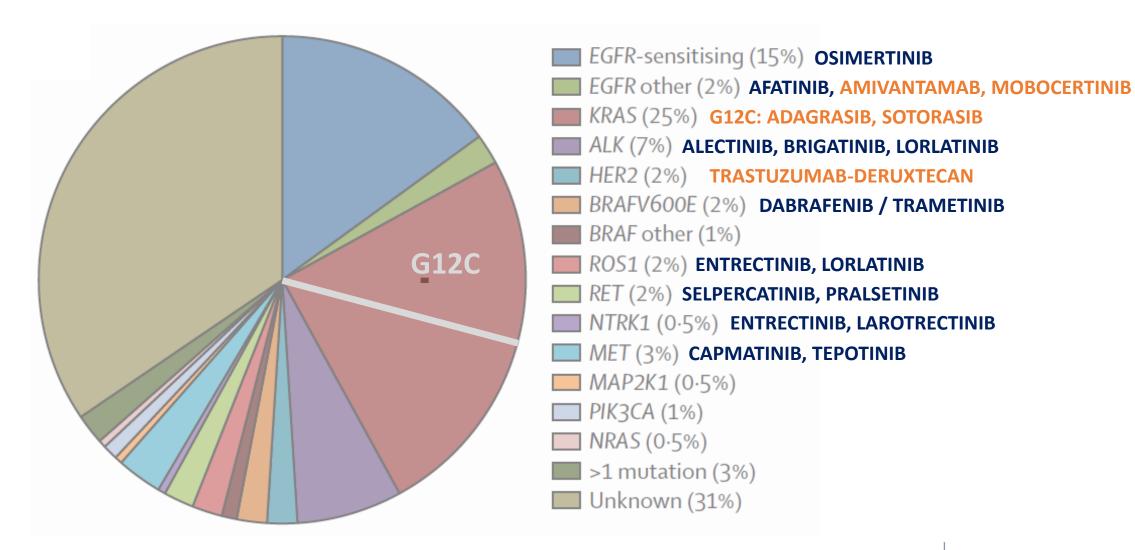
2011 ASCO: EGFR (provisional)

2013 CAP / IASLC / AMP: EGFR, ALK, ALL PATIENTS WITH ADVANCED STAGE, <14 DAY TAT


2018 CAP/ IASLC / AMP: EGFR, ALK, ROS1, PD-L1

2018 ASCO: EGFR, ALK, ROS1, BRAF, PD-L1

NCCN v3.2023: NGS (preferred) or broad panel testing targets with therapeutic


options

#### **NSCLC ADENOCARCINOMA ONCOGENES**





#### TREATMENT OPTIONS FOR ONCOGENE DRIVEN NSCLC





|        | Benefits                                                                       | Limitations                                                         |
|--------|--------------------------------------------------------------------------------|---------------------------------------------------------------------|
| ctDNA  | Quick turnaround time                                                          | Variable ctDNA shedding decreases sensitivity                       |
|        | Minimally invasive                                                             | More technically challenging for fusions or copy number alterations |
|        | Captures tumoral heterogeneity                                                 |                                                                     |
|        | Ability to detect disease when none is detectable on imaging                   |                                                                     |
|        | Temporal monitoring                                                            |                                                                     |
| Tissue | Direct observation of the tumor to establish tumor purity                      | Often requires invasive procedure                                   |
|        | Preferred method of biomarker testing (HER2, ER, PR, PD-L1, etc.)              | Generally longer turnaround time                                    |
|        | Ability to validate tumor somatic alterations compared to germline and/or CHIP |                                                                     |

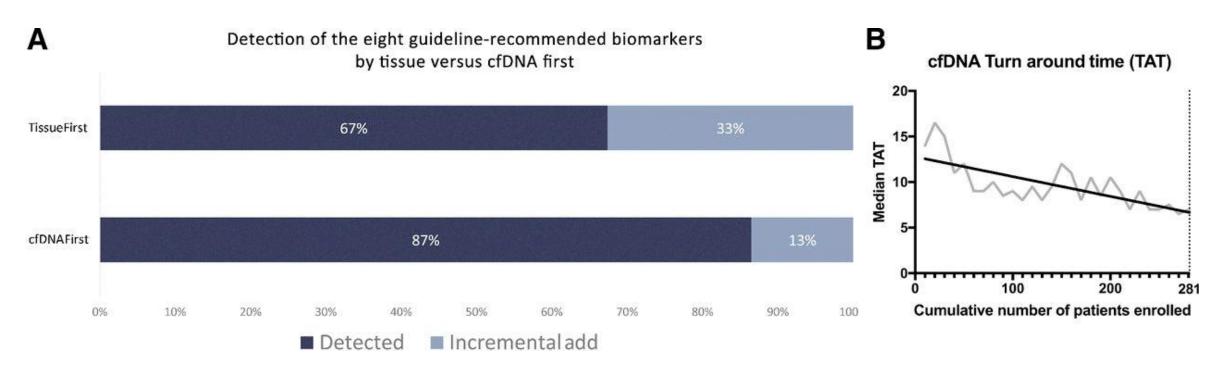
#### Other issues pertinent to lung cancer:

- PD-L1 IHC
- Histology



#### **NILE Study**

Non-inferiority study of ctDNA vs SOC tissue genotyping


282 treatment naïve non-squamous NSCLC patients

Paired ctDNA and SOC tissue testing

SOC tissue testing was deemed QNS if < 8 guideline recommended biomarkers

EGFR, ALK, ROS1, BRAF, RET, MET amp, MET exon 14, ERBB2



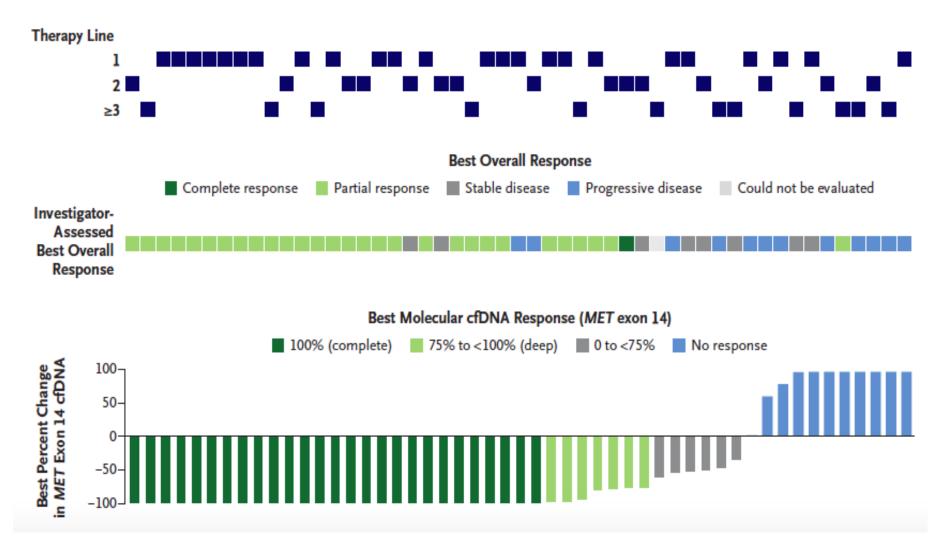


**MEAN TAT:** 

Tissue: 15 days p < 0.0001



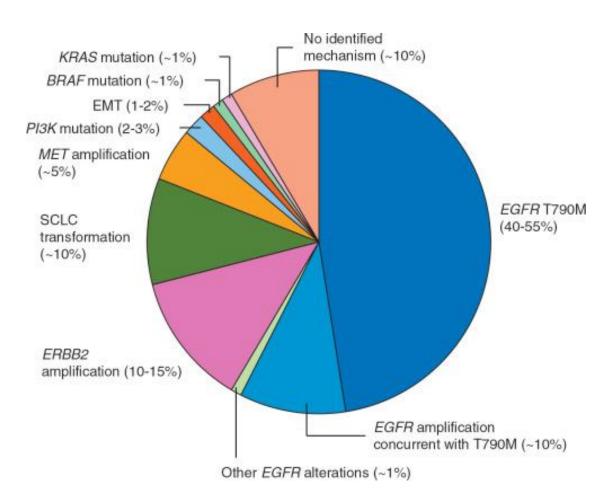
| Guideline-recommended biomarker positivity by sample type |          |          | Tissue   |       |  |
|-----------------------------------------------------------|----------|----------|----------|-------|--|
|                                                           |          | Positive | Negative | Total |  |
| cfDNA                                                     | Positive | 48       | 29       | 77    |  |
|                                                           | Negative | 12       | 193      | 205   |  |
|                                                           | Total    | 60       | 222      | 282   |  |


Tissue rate: 60/282 (21.3%) ctDNA rate: 77/282 (27.3%)

Tissue "undergenotyping:" 82% of tissue < 8 biomarkers

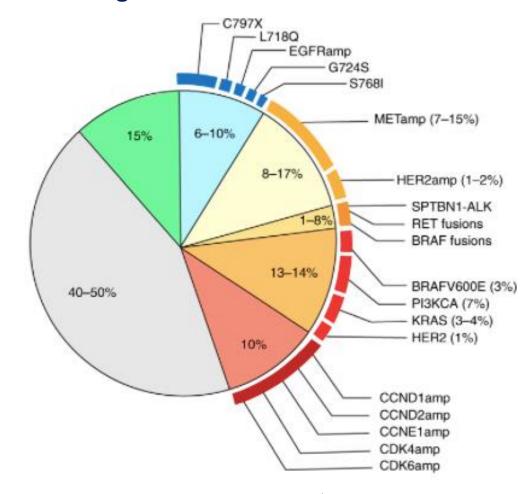
ctDNA increased target identification by 32% over tissue




#### ctDNA TO MONITOR RESPONSE - TEPOTINIB






#### EGFR AND CHANGING RESISTANCE

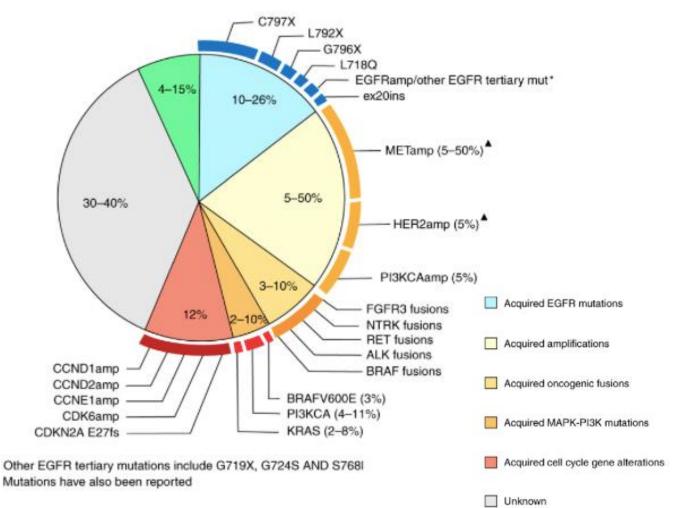
#### Old Paradigm: Post 1st Gen TKI



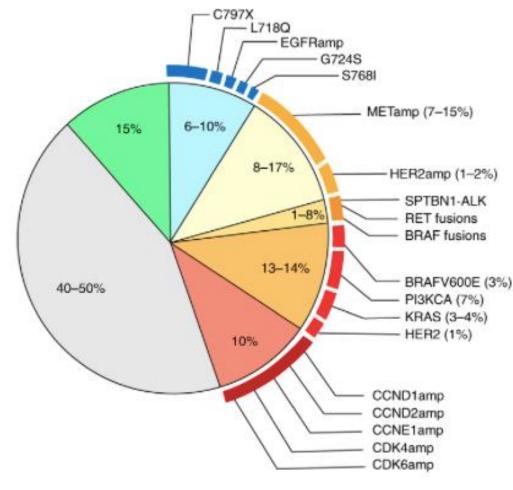
Annals of Oncology, Volume 29, Supplement 1, January 2018, Pages i10-i19 BJC 2019, Leonetti et al

#### New Paradigm: Post 3<sup>rd</sup> Gen TKI






UVA Cancer Center Thoracic Medical Oncology


#### **RESISTANCE: LINE OF THERAPY MATTERS**

Transformations (SCLC, SCC)

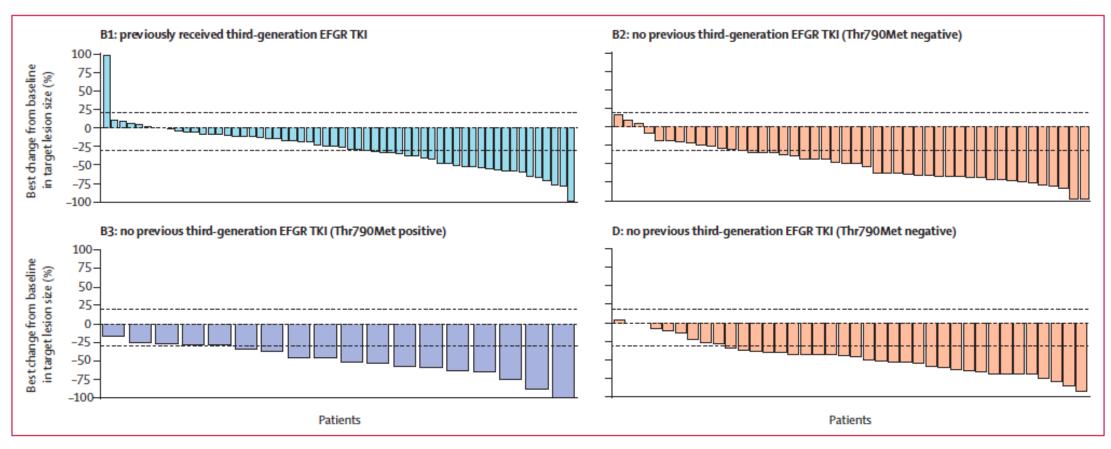
Resistance mechanisms to second-line osimertinib



Resistance mechanisms to first-line osimertinib






#### WHY TEST AT RESISTANCE

Osimertinib plus savolitinib in patients with EGFR mutation-positive, MET-amplified, non-small-cell lung cancer after progression on EGFR tyrosine kinase inhibitors: interim results from a multicentre, open-label, phase 1b study

Lecia V Sequist\*, Ji-Youn Han\*, Myung-Ju Ahn, Byoung Chul Cho, Helena Yu, Sang-We Kim, James Chih-Hsin Yang, Jong Seok Lee, Wu-Chou Su, Dariusz Kowalski, Sergey Orlov, Mireille Cantarini, Remy B Verheijen, Anders Mellemgaard, Lone Ottesen, Paul Frewer, Xiaoling Ou, Geoffrey Oxnard



#### WHY TEST AT RESISTANCE



48% ORR in part B (post TKI) 64% in part D (T790M neg and no prior 3rd gen TKI)

Lancet Oncol 2020; 21: 373-86

Other studies ongoing: ORCHARD, SAVANNAH, others



#### **SUMMARY**

In NSCLC, there are numerous 1<sup>st</sup> line (seven) and 2<sup>nd</sup> line (three) molecular targets for treatment

ctDNA offers advantages in time and coverage in newly diagnosed patients

ctDNA will likely be used to monitor response in the future

Resistance to therapy will drive new treatments in *EGFR* positive disease and likely other targets



#### Case presentation

- Patient is a a 71 yo F who is referred to medical oncology by her gastroenterologist for evaluation of elevated CEA and hepatic lesion.
- PET/CT is obtained which reveals 3x2 cm left perihilar hypermetabolic lesion, ipsilateral mediastinal and hilar hypermetabolic lymph nodes, and FDG avid lesions within the thoracic spine, lumbar spine, and sacrum.
- Left upper lobe lung biopsy is obtained which confirms adenocarcinoma (PD-L1 5%), initial stage at diagnosis T2aN2M1b, stage IVB.
- Genomic analysis is sent on the primary tumor biopsy.

## Molecular analysis reveals EGFR exon 21 mutation (L858R)

Molecular Markers by PCR and FISH:

EGFR: Exon 21 Mutation DETECTED c.2573T>G (p.L858R)

ALK Not performed

ROS: Not performed

BRAF: NEGATIVE NTRK1-3: NEGATIVE

RET NEGATIVE

#### Results:

| Test                         | Result       | Mutations           |
|------------------------------|--------------|---------------------|
| EGFR Mutation                |              |                     |
| EGFR Exon 18                 | Not Detected | N/A                 |
| EGFR Exon 19                 | Not Detected | N/A                 |
| EGFR Exon 20 T790M           | Not Detected | N/A                 |
| EGFR Exon 20 Other Mutations | Not Detected | N/A                 |
| EGFR Exon 21                 | Detected     | c.2573T>G (p.L858R) |

### Case presentation (Cont'd)

- The patient begins 1<sup>st</sup>-line therapy with osimertinib 80 mg daily and receives palliative radiation to thoracic spine and sacrum.
- Initial restaging imaging ~4 months after beginning osimertinib reveals near total resolution (~1.2 cm residual lesion) of left perihilar mass, resolution of mediastinal and hilar adenopathy, and stability of multiple now sclerotic-appearing osseous metastases.
- Approximately 27 months after starting osimertinib, a PET/CT is obtained for worsening low back and left flank pain. This demonstrates clear evidence of disease progression with findings of new multifocal osseous metastatic lesions.
- Patient is referred to UVA for second opinion.

# GUARDANT 360 testing on peripheral blood reveals emergence of BRAF V600E mutation in ctDNA

| DETECTED ALTERATION(5) /<br>BIOMARKER(5) | % CFDNA OR<br>AMPLIFICATION            | ASSOCIATED FDA-APPROVED THERAPIES                                                                                                     | CLINICAL TRIAL<br>AVAILABILITY |
|------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| <u>EGFR</u> <u>L858R</u>                 | 41.7%                                  | Afatinib. Dacomitinib. Erlotinib. Erlotinib+ramucirumab. Gefitinib. Osimertinib                                                       | Yes                            |
| BRAF Y600E                               | 11.0%                                  | Dabrafenib+trametinib Binimetinib, Cobimetinib, Dabrafenib, Encorafenib+binimetinib, Trametinib, Vemurafenib, Vemurafenib+cobimetinib | Yes                            |
| TP53 R342*                               | 30.2%                                  | None                                                                                                                                  | Yes                            |
| PIK3CA Amplification                     | High (+++)<br>Plasma Copy Number: 4.2  | None                                                                                                                                  | Yes                            |
| EGFR Amplification                       | Medium (++)<br>Plasma Copy Number: 2.7 | None                                                                                                                                  | Yes                            |

### Case presentation (conclusion)

- While awaiting referral to UVA, the patient's local oncologist opted to add bevacizumab and to continue osimertinib. Palliative radiation to lumbar spine and left hip are completed as well.
- Thoracic oncology at UVA recommends discontinuation of bevacizumab in favor of starting dabrafenib 150 mg BID, trametinib 1 mg daily, and to continue osimertinib.
- Patient is lost to oncology follow up at UVA, however last medical contact in the EHR occurred ~2 months after last visit with UVA providers, and at this time both dabrafenib and trametinib appeared on her medication list.



## Wrap-Up & Post-Session Poll Questions

#### **A Few Reminders:**



Next ECHO Session: Monday, June 12<sup>th</sup> at 4:30 – 5:15 PM (EST)



Didactic Presentation will include ACSO updates and Biomarker Testing



Materials and Resources will be made available via the ACS ECHO Website



**Spokes:** Interested in scheduling a Case Presentations. Let us know.



Faculty: All case presentations will be shared with you at least 24-hours in advance



Additional Feedback on Today's Session? Tell us in the Post Session Feedback Forum (URL in chat box) <a href="https://forms.office.com/r/TNR4UT0uc1">https://forms.office.com/r/TNR4UT0uc1</a>



Questions: Contact Korey. Hofmann@cancer.org or Annika. Dean@cancer.org





## **THANK YOU!**

## PLEASE MARK YOUR CALENDAR

MONDAY, JUNE 12<sup>TH</sup> AT 4:30PM EST



